A new publication in Applied Optics

Our first work in scattering type visible near-field scanning optical microscope has been published in Applied Optics.

 

Abstract: Due to its superb imaging spatial resolution and spectroscopic viability, scattering-type scanning near-field optical microscopy (s-SNOM) has proven to be widely applicable for nanoscale surface imaging and characterization. However, limited works have investigated the sensitivity of the s-SNOM signal to sample temperature. This paper reports the sample temperature effect on the non-interferometric (self-homodyne) s-SNOM scheme at a visible wavelength (λ = 638 nm). Our s-SNOM measurements for an arrayed vanadium/quartz sample demonstrate a monotonic decrease in signal intensity as sample temperature increases. As a result, s-SNOM imaging cannot distinguish quartz or vanadium when the sample is heated to 309 K: all signals are close to the root- mean-square noise of the detection scheme used for this study (i.e., 19 μV-rms). While further studies are required to better understand the underlying physics of such temperature dependence, the obtained results suggest that s-SNOM measurements should be carefully conducted to meet a constant sample temperature condition, particularly when a visible-spectrum laser is to be used as the light source.